Skip to main content

MCP Server

Raven Docs includes a Model Context Protocol (MCP) server that allows AI agents to interact with your knowledge base.

What is MCP?

The Model Context Protocol is a standard for connecting AI assistants to external tools and data sources. It enables AI agents to:

  • Read and search your documentation
  • Create and update content
  • Manage tasks and projects
  • Store persistent memory

Architecture

Key Features

100+ Tools

Access all Raven Docs functionality through standardized tools:

CategoryTools
SpacesCreate, list, update, delete spaces
PagesFull CRUD, history, search
TasksManage tasks and projects
UsersList and manage users
SearchFull-text search
MemoryStore and query agent memory

Tool Discovery

Agents can search for relevant tools without loading the entire catalog:

{
"name": "tool_search",
"arguments": {
"query": "create page",
"limit": 5
}
}

Agent Memory

Store persistent context between conversations:

{
"name": "memory_ingest",
"arguments": {
"workspaceId": "ws_123",
"content": "User prefers formal documentation style",
"tags": ["preferences", "style"]
}
}

Use Cases

AI Documentation Assistant

Build an AI assistant that can answer questions using your documentation:

const response = await agent.run({
messages: [
{ role: 'user', content: 'How do I set up authentication?' }
],
tools: mcpTools,
});
// Agent searches docs and provides answer with sources

Automated Documentation Updates

Keep documentation in sync with code changes:

// When API changes are detected
await mcpClient.callTool('page_update', {
pageId: 'api-reference',
content: generateApiDocs(newSchema),
});

Intelligent Chatbot

Create a chatbot with full knowledge of your product:

// Chatbot uses MCP to search knowledge base
const results = await mcpClient.callTool('search_query', {
workspaceId: 'ws_123',
query: userQuestion,
});

Research Agents

Build agents that can research topics across your docs:

await mcpClient.callTool('research_create', {
workspaceId: 'ws_123',
spaceId: 'space_456',
topic: 'competitor analysis',
});

Quick Start

  1. Get an API key from SettingsAPI Keys
  2. Configure your MCP client
  3. Start using tools
{
"mcpServers": {
"raven-docs": {
"url": "http://localhost:3000/api/mcp-standard",
"headers": {
"Authorization": "Bearer YOUR_API_KEY"
}
}
}
}

See the Quickstart Guide for detailed setup.

Endpoints

EndpointDescription
POST /mcp-standard/initializeInitialize connection
POST /mcp-standard/list_toolsList all tools
POST /mcp-standard/search_toolsSearch for tools
POST /mcp-standard/call_toolExecute a tool
POST /mcp-standard/list_categoriesList tool categories